
CS106B
Spring 2012

Handout #12
April 23, 2012

Section Handout 3

Based on a handout by Eric Roberts

Problem 1. Weights and Balances (Chapter 8, exercise 6, page 380)

I am the only child of parents who
weighed, measured, and priced everything;
for whom what could not be weighed,
measured, and priced had no existence.

—Charles Dickens, Little Dorrit, 1857

In Dickens’s time, merchants measured many commodities using weights and a two-pan balance—a
practice that continues in many parts of the world today. If you are using a limited set of weights,
however, you can only measure certain quantities accurately.

For example, suppose that you have only two weights: a 1-ounce weight and a 3-ounce weight. With
these you can easily measure out 4 ounces, as shown:

It is somewhat more interesting to discover that you can also measure out 2 ounces by shifting the 1-
ounce weight to the other side, as follows:

Write a recursive function

bool isMeasurable(int target, Vector<int> & weights)

that determines whether it is possible to measure out the desired target amount with a given set of
weights, which is stored in the vector weights.

As an example, suppose that the variable sampleWeights has been initialized as follows:

Vector<int> sampleWeights;

sampleWeights += 1, 3;

Given these values, the function call

isMeasurable(2, sampleWeights)

should return true because it is possible to measure out 2 ounces using the sample weight set as
illustrated in the preceding diagram. On the other hand, calling

isMeasurable(5, sampleWeights)

should return false because it is impossible to use the 1- and 3-ounce weights to add up to 5 ounces.

- 1 -

Problem 2. Filling a Region (Chapter 9, exercise 4, page 421)

Most drawing programs for personal computers make it possible to fill an enclosed region on the
screen with a solid color. Typically, you invoke this operation by selecting a paint-bucket tool and then
clicking the mouse, with the cursor somewhere in your drawing. When you do, the paint spreads to
every part of the picture it can reach without going through a line.

For example, suppose you have just drawn the following picture of a house:

If you select the paint bucket and click inside the door, the drawing program fills the area bounded by
the door frame as shown at the left side of the following diagram. If you instead click somewhere on
the front wall of the house, the program fills the entire wall space except for the windows and doors, as
shown on the right:

In order to understand how this process works, it is important to understand that the screen of the
computer is actually broken down into an array of tiny dots called pixels. On a monochrome display,
pixels can be either white or black. The paint-fill operation consists of painting black the starting pixel
(i.e., the pixel you click while using the paint-bucket tool) along with any pixels connected to that
starting point by an unbroken chain of white pixels. Thus, the patterns of pixels on the screen
representing the preceding two diagrams would look like this:

It is easy to represent a pixel grid using the type Grid<bool>. White pixels in the grid have the value
false, and black pixels have the value true. Given this representation, write a function

void fillRegion(Grid<bool> & pixels, int row, int col)

that simulates the operation of the paintbucket tool by painting in black all white pixels reachable from
the specified row and column without crossing an existing black pixel.

- 2 -

Problem 3. Generating Multiword Anagrams

Even before we got to recursion, I showed how it was possible to use the map data structures to find all
anagrams of a given word, where an anagram is simply a string with the same letters in a different
order. Recursion makes it possible to do much more with the anagram idea. In particular, you can
write programs that extend the idea of anagrams to multiple words. Dan Brown used several
multiword anagrams as clues in his 2003 best-selling thriller The Da Vinci Code, so that (if you ignore
spaces) you discover that

o draconian devil ↔ leonardo da vinci

oh lame saint ↔ the mona lisa

so dark the con of man ↔ madonna of the rocks

Your job in this problem is to write a function

 bool findAnagram(string letters, Lexicon & english,

 Vector<string> & words);

that takes a string of letters with all spaces and punctuation removed, the well-worn lexicon of English
words, and a vector to hold the words of the generated anagram. As soon as findAnagram discovers a
series of English words that are an anagram of the specified letters, it should return true with those
words stored in the vector. If no anagrams exist, findAnagram should return false. To avoid
returning anagrams that consist of boring short words, you should also include a constant in your
implementation setting the minimum size of a word.

- 3 -

